# Tevatron crystal collimation experiment (T-980)

by Vlasov Alexander

Moscow State University

Physical faculty

Departments of physics of elementary particles

Mentor: Dean Still





# Tevatron crystal collimation experiment

New approach to remove beam halo, reducing heat load on cold magnets. Proposed to be used in next LHC collimator upgrade (approximately 2015). Main advantage – can remove beam halo in 1 pass with higher efficiency.





#### Crystal channeling

If particles entering a crystal are properly aligned to the crystal planes, they will follow the planes, even if the crystal is bent.







#### Other processes in a bent crystal

- 1. Amorphous orientation
- 2. Volume reflection
- 3. De-channeling



# Example of a crystal

Multi-strip silicon crystal (16 strips)



#### System setup – angle scan

Angle of crystal in respect to the beam is changed. Crystal goes to "channel" or "volume reflection" mode.







#### Angle scan data and results



#### Fitting the data

- Function for fitting: combination of Darwin plateau and a Gaussian.
- Parameter of a "width" is determined as full width on a half of volume reflection efficiency.
- Also "sigma" parameter for Gaussian and width of plateau are listed.
- Efficiency calculated in percents. 100% corresponds to from zero to y0 level.





#### System setup - collimator scans

 Collimator is moved to find a distribution of channeled or reflected beam and a displacement between main and channeled/ reflected beamculating Beam







#### Collimator scan data and results



#### Fitting the data

- Depending of a beam profile, different number of Error functions was used.
- Fitting gives a displacement between channeled/reflected beam and the main beam, so gives a channeling/reflection angle, connected with crystal bend angle.
- It looks like there are aperture effects between E1 and B0.





#### Results

The data from 2005 till 2010 is analyzed: angle scans and collimator scans.

Simulation data was analyzed and showed right choice of fitting functions.

Gaussian profile of channeling efficiency vs. angle confirmed.

Numerical data for 3 crystals and plots are linked to T-980 collaboration website.





## Experimental results

| Parameters                                   | Crystal                                     |                                              |                                        |
|----------------------------------------------|---------------------------------------------|----------------------------------------------|----------------------------------------|
|                                              | O-05-09                                     | MS-08-09                                     | O-BNL-02                               |
| Channeling peak position, experimental, urad | -961 (+/- 9 (stat)<br>+/- 2 (instr))        | 655 (+/- 10 (stat)<br>+/- 3 (instr))         | -                                      |
| Channeling peak position, simulation, urad   | -963 (+/- 2 (stat)<br>+/- I (instr))        | 658.5 (+/- 2.1<br>(stat) +/- 1.3<br>(instr)) | -                                      |
| Channeling width, experimental, urad         | 16 (+/- 5 (stat)<br>+/- 2 (instr))          | 59 (+/- 12 (stat)<br>+/- 3 (instr))          | -                                      |
| Channeling width, simulation, urad           | 10.5 (+/- 1.2<br>(stat) +/- 1.1<br>(instr)) | 26 (+/- 2 (stat)<br>+/- I (instr))           | -                                      |
| Full bend angle, experimental, urad          | 280 (+/- 54 (stat)<br>+/- 100 (instr))      | 255 (+/- 29 (stat)<br>+/- 6 (instr))         | 444 (+/- 22 (stat)<br>+/- 108 (instr)) |
| Full bend angle, expected, urad              | 360                                         | 200                                          | 410 (+/- 20)                           |

### Thank you for attention

#### Extra slides

#### Simulation data





R-squared 0.999

